Bayesian Estimation of GARCH Model by Hybrid Monte Carlo
نویسنده
چکیده
The hybrid Monte Carlo (HMC) algorithm is used for Bayesian analysis of the generalized autoregressive conditional heteroscedasticity (GARCH) model. The HMC algorithm is one of Markov chain Monte Carlo (MCMC) algorithms and it updates all parameters at once. We demonstrate that how the HMC reproduces the GARCH parameters correctly. The algorithm is rather general and it can be applied to other models like stochastic volatility models.
منابع مشابه
Bayesian estimation of GARCH model with an adaptive proposal density
A Bayesian estimation of a GARCH model is performed for US Dollar/Japanese Yen exchange rate by the Metropolis-Hastings algorithm with a proposal density given by the adaptive construction scheme. In the adaptive construction scheme the proposal density is assumed to take a form of a multivariate Student’s t-distribution and its parameters are evaluated by using the sampled data and updated ada...
متن کاملBayesian Model Selection for Heteroskedastic Models
It is well known that volatility asymmetry exists in financial markets. This paper reviews and investigates recently developed techniques for Bayesian estimation and model selection applied to a large group of modern asymmetric heteroskedastic models. These include the GJR-GARCH, threshold autoregression with GARCH errors, threshold GARCH and Double threshold heteroskedastic model with auxiliar...
متن کاملBayesian analysis of GARCH and stochastic volatility: modeling
This paper develops a Bayesian model comparison for two broad major classes of varying volatility model, GARCH and stochastic volatility (SV) models on financial time series. The leverage effect, jumps and heavy-tailed errors are incorporated into the two models. For estimation, the efficient Markov chain Monte Carlo methods are developed and the model comparisons are examined based on the marg...
متن کاملExtreme Value GARCH modelling with Bayesian Inference
Extreme value theory is widely used financial applications such as risk analysis, forecasting and pricing models. One of the major difficulties in the applications to finance and economics is that the assumption of independence of time series observations is generally not satisfied, so that the dependent extremes may not necessarily be in the domain of attraction of the classical generalised ex...
متن کاملMarkov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme
We perform Markov chain Monte Carlo simulations for a Bayesian inference of the GJR-GARCH model which is one of asymmetric GARCH models. The adaptive construction scheme is used for the construction of the proposal density in the Metropolis-Hastings algorithm and the parameters of the proposal density are determined adaptively by using the data sampled by the Markov chain Monte Carlo simulation...
متن کامل